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SUMMARY 
The ability of two types of Conjugate Gradient like iterative solvers (GMRES and ORTHOMIN) to resolve 
large-scale phenomena as a function of mesh density and convergence tolerance limit is investigated. The 
flow of an incompressible fluid inside a sudden expansion channel is analysed using three meshes of 400, 
1600 and 6400 bilinear elements. The iterative solvers utilize the element-by-element data structure of the 
finite element technique to store and maintain the data at the element level. Both the mesh density and the 
penalty parameter are found to influence the choice of the convergence tolerance limit needed to obtain 
accurate results. An empirical relationship between the element size, the penalty parameter, and the 
convergence tolerance is presented. This relationship can be used to predict the proper choice of the 
convergence tolerance for a given penalty parameter and element size. 
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INTRODUCTION 

Background 

Finite element analysis of practical engineering problems requires discretizing the problem 
domain into a finely divided mesh. The finite element approximation of the governing equations 
results in a system of algebraic equations. Solving the system of equations is the most time- 
consuming part of a numerical analysis and accounts for nearly 80 per cent of the CPU time and 
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storage. In general the system of equations can be solved using either direct elimination methods 
or iterative methods. 

Direct solvers like the Gauss elimination methods provide the solution to the system of 
equations after a fixed number of steps and are less sensitive to the conditioning of the matrix. 
However, the main deficiencies of direct solvers become clear when used to solve a large system 
equations because they require the matrix to be stored in a ordered format. Moderately large 
problems can be solved using refined direct solvers such as frontal solver, skyline solver, and 
others (see Reference 1). These refined direct solvers demand out-of-core storage of the equations 
and hence require large data transfer. The limitations on CPU time and storage requirements 
make the use of direct solvers uneconomical and impractical to solve a complex problem with 
more than quarter million equations. 

Iterative solvers, on the other hand, require less storage and CPU time while giving compar- 
able accuracy of the solution for a large system of equations. For these solvers the global matrix 
formulation is avoided. Here, the major operation is the matrix-vector multiplication instead of 
the matrix inversion or elimination used in direct solvers. However, the drawbacks of the iterative 
solvers are that the accuracy depends on the convergence parameters used and the convergence 
rate depends on the condition number (ratio of the largest to the smallest eigenvalue) of the 
matrix. These drawbacks discouraged active use of iterative solvers for last few decades. In spite of 
these difficulties, the demand for numerical solution of large, complex problems has renewed 
interest in the iterative solvers due to the CPU-intensive nature of direct solvers. Much of the 
current study of the iterative solvers involves improvements to the convergence and accuracy of 
various solvers. 

Among the various iterative methods, the Conjugate Gradient (CG) method’ is most widely 
used because it is a finite step method (i.e. apart from round-off errors, solution is achieved in 
a fixed number of iterations). The convergence of the conjugate gradient method, and iterative 
methods in general, can be improved by preconditioning and/or scaling the  equation^.^.^ 

The storage requirements for the iterative solvers can be further reduced by solving the 
equations at element level, i.e. using the Gauss-Seidel iteration method for the set of variables 
associated with the element. An advantage of doing calculations at element level is that assembly 
of element matrices to form the global coefficient matrix is eliminated. This idea of using the 
Element-By-Element (EBE) data structure of the coefficient matrix was first pointed out by Fox 
and Stanton’ and Fried.” In this method the matrix-vector multiplications are carried out at the 
element level and the assembly is carried out on the resultant vector. The advantage of using the 
EBE data structure of the finite element mesh becomes apparent when solving large problems, 
because the matrix-vector multiplication can be done in parallel on series of processors. 

Several different algorithms have been developed which use the element-by-element data 
structure with some type of conjugate gradient method (such as ORTHOMIN, ORTHORES4 or 
GMRES’ ). The algorithms are described in detail by Hayes’ and Wathen.g Iterative solution 
methods using the EBE data structure are proposed for solving problems in solid mechanics,loJ1 
heat transfer,” compressible fluid flows,I3- l6 and incompressible fluid flows using stream 
function-vorticity formulation and primitive variable formulations. 17- 2o In majority of these 
articles, the savings in computer run time and disk storage by using iterative solvers are 
highlighted without discussing the sensitivity of the solver to mesh density. 

Recently, Reddy et al.,’li’’ analysed incompressible fluid flow problems in primitive variables 
using the EBE data structure of the finite elements and iterative solvers (GMRES, ORTHOMIN 
and ORTHORES). The problem of having a large penalty parameter was overcome by using an 
iterative penalty function method. The EBE scheme with iterative penalty function approach was 
found to be very efficient and accurate for a wide range of problems. The accuracy of the 
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procedure and the iterative solvers was determined by comparing the results with an efficient 
direct solver (e.g. frontal solver). A least-square finite element model for pressure was also 
presented there (see References 21-24 for details), 

The convergence rate of iterative solvers decreases significantly after resolving the Fourier 
components of the errors whose wavelengths are comparable to the size of the mesh. Therefore, 
for a specified convergence tolerance limit, the accuracy of a given method and the time required 
to satisfy the convergence criterion depends on its behaviour as a function of mesh density. Mesh 
density sensitivity information for an iterative solution method can be provided by mesh 
refinement studies. Mesh refinement studies are expensive for three-dimensional problems, and 
one quickly exhausts the computer resources. In addition, validation of the results becomes 
difficult due to lack of experimental results or inability to perform similar studies using more 
robust direct solvers. However, such studies can be carried out on two-dimensional problems. 

Present study 

Mesh refinement studies comparing the behaviour of different iterative solvers are not available 
in literature at the time of this work. In this paper, we report the results of mesh refinement studies 
for two different iterative solvers (GMRES and ORTHOMIN). The accuracy of the GMRES and 
the ORTHOMIN solvers as a function of mesh density and convergence criterion is examined. 
This study is confined to two-dimensional problems because of the aforementioned reasons. 
However, the conclusions made in this study can be generalized and are applicable for three- 
dimensional problems. 

Accuracy of the iterative solvers is determined by comparing the results with the available 
values in literature and also with those obtained by solving the system of equations using 
a refined direct solver (frontal solver). Direct solvers and their refined versions are very efficient in 
analysing two-dimensional problems. On the other hand, the iterative solvers require more CPU 
time than the direct solvers and this discourages the use of iterative solvers for two-dimensional 
problems. Since the main objective of this investigation is to determine the sensitivity of two CG 
like iterative solvers to the mesh density, we are not concerned with the amount of CPU time 
required by each solver to provide acceptable converged solution. 

The governing equations and the solution procedure are explained in the next section. The 
effect of mesh density and convergence criterion on the resolution of large-wavelength errors 
(large-scale phenomenon) is examined by using GMRES and ORTHOMIN solvers. Two- 
dimensional flow of incompressible fluid over a backward facing step at a Reynolds number of 60 
is used as a test problem. 

GOVERNING EQUATIONS 

Conservation equations 

The laws governing the flow of isothermal, incompressible Newtonian fluids are the basic laws 
of conservation of mass and momentum. These can be expressed analytically in terms of the 
velocity field and pressure in a rectangular Cartesian co-ordinate system ( x l ,  x2, x3):  
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where R is a two-dimensional domain, ui is the velocity vector, p is the mass density of the fluid, g i  
is the gravitational acceleration, cij is the total stress tensor. This work examines a steady-flow 
problem, so the time derivative of the velocities is dropped from equation (2). 

The constitutive equation for the total stress tensor, aij, is given by 

where oij are the components of the deviatoric stress tensor and P is the pressure. The 
components of the deviatoric stress tensor can in turn be expressed as 

where 

. . - - 1 (- aui + -- auj ) 
D1~-2  axj axi 

are the components of the rate of strain tensor and q is the viscosity, which is, in general, 
a function of temperature and rate of strain. 

Boundary conditions 

To complete the set of equations, equations (1) and (2) need to be combined with an 
appropriate set of boundary conditions. For the momentum equations, the velocities (essential 
boundary condition) or the surface traction (natural boundary condition) must be specified along 
the boundary r of the flow domain R. The boundary conditions on the velocity and stress are 
mutually exclusive. Let I-,, denote the boundary on which the velocities are specified, and ru be 
the boundary on which the stresses are specified. We have r=T,uT,. 

ui=Pi on r.; or t i = e i j n j  on ro, 
where nj denote the components of the outward unit normal on the boundary r. Note that 
pressure enters the natural boundary conditions through the total stress components. 

COMPUTATIONAL ASPECTS 

Formulation 

The governing equations (1) and (2) are solved here using a penalty finite element model. In the 
penalty function formulation, the incompressibility constraint is used as a constraint on the 
velocity fields (see Reference 25 for details). This approach results in replacing the pressure with 
the expression 

aui 
axi 

p =  - I -  (7) 

and omitting the equation of continuity, equation (1). Here I denotes the penalty parameter. For 
increasingly larger values of I ,  the continuity equation is satisfied more accurately. The advantage 
of the penalty function formulation is that the pressure does not enter the formulation as 
a primary unknown variable. This penalty finite element model is termed the traditional penalty 
model, and it is solved here using the frontal solver. 

The convergence rate of iterative solvers depends on the condition number of the coefficient 
matrix. For large values of penalty parameter, the iterative solvers perform poorly. This difficulty 
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can be overcome by using an iterative penalty model (see Reference 21 for details). When using 
iterative penalty model, the pressure at nth iteration is written as 

aui 
axi pn+l= -1-+ P". 

A value of lo8 is used for 1 in the present analysis for the frontal solver and a value of lo4 is 
used for iterative solvers. A smaller value of penalty parameter is sufficient because the continuity 
equation is satisfied gradually in iterative penalty model. 

Solution strategies 

of the form 
The penalty finite element formulation of equations (1) and (2) results in the element equations 

K(A)A= F ,  (9) 
where the coefficient matrix K is a non-linear function of nodal velocity components, A=(u, v)~. 
The non-linear equations (9) are solved using the Picard type iterative method. The type of 
convergence criterion used is 

where A: denotes the nodal value at node i and iteration n, E is the tolerance (say 0-01) and N is the 
number of equations. 

Pressure can be calculated from either equation (7) or equation (8). However, the pressures 
calculated by these equations exhibit oscillatory behaviour as they depend on the error in the 
divergence-free condition. In order to suppress these oscillations, the pressure is calculated by 
recastifig the momentum equations into a least-square type finite element model with the pressure 
as the unknown and the velocities known from the solution of (9): 

[ K * ]  { P } = ( F * } .  

This method is found to yield more accurate results for pressure in a wide variety of problems. 
Four-noded bilinear elements are used for u, v and P in this study. The linearized system of 

equations (9) and pressure equations (11) are solved using both frontal and iterative solution 
methods. For iterative solvers, the convergence criterion for velocity and pressure were taken to 
be E =  unless stated otherwise. In this study, the pressure is computed at every non-linear 
iteration when the iterative solvers are used, whereas it is computed in the frontal solver after the 
solution for velocities is converged. 

The iterative solvers implemented herein exploit the EBE data structure of the finite element 
mesh. The iterative solvers GMRES and ORTHOMIN are used here. These methods are 
generalizations of the CG algorithms for non-symmetric systems and may also be regarded as 
some variants of the method of Lanczos. The ORTHOMIN solver minimizes the energy norm of 
the system of equations. On the other hand, the GMRES solver minimizes the residual norm. The 
solution algorithms for these two iterative solvers can be found in References 4 and 7. 

To improve the convergence of the iterative solvers the coefficient matrix and the force vectors 
are scaled using diagonal (Jacobi) preconditioning. Other levels of preconditioning (multilevel) 
are also possible.16 The Krylov space in GMRES is set to 50. The program was run on 
IBM/RS6000 530 Power Station. 
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NUMERICAL RESULTS 

Model problem solved 

The laminar, incompressible flow through a channel with sudden expansion is used as a test 
problem for this study. The problem geometry and the flow conditions are given in Figure 1. The 
widths of the channel inlet and outlet sections are one unit and two units, respectively. The length 
of the channel is equal to six units. The sudden expansion is located two units downstream from 
the inlet. The Reynolds number of 60 is based on the maximum inlet velocity (U) and the inlet 
width. A fully developed, parabolic velocity profile is specified at the inlet and the zero traction 
boundary conditions are imposed at the exit. No slip boundary conditions for velocity are 
imposed at the solid walls. A reference zero pressure is specified at the exit. A finite element 
solution for this problem is given by Lee et a1.26 An interesting feature of this flow is the 
separation at the expansion and the reattachment downstream of the expansion. At higher 
Reynolds numbers, multiple separation regions will form and eventually the flow becomes 
unsteady. The reattachment length depends on the Reynolds number of the flow. 

The first portion of this section will discuss in detail the observed interaction of the element size 
(Ah), the convergence criterion (E) ,  and the penalty parameter (A) on the convergence rate and the 
accuracy of the conjugate gradient solvers. In the second part of this section, an empirical 
relationship between dh, E and 1 is presented. 

Interaction and choice of dh, E and A 

The velocity field and pressure distribution are computed for three different meshes (400, 1600 
and 6400 elements) using both direct (frontal solver) and iterative solver (EBE/GMRES and 
EBE/ORTHOMIN) solvers. The finite element mesh for the coarsest mesh (400 elements: 
dx=0125 and dy=O.l) is shown in Figure 2. The same element aspect ratio is maintained for the 
refined meshes. Namely, the element dimensions for 1600 elements mesh are half that of 400 
element mesh. Similarly, the element dimensions for 6400 element mesh are half that of 1600 

Inrlde Comer 

T 
2 t x r o  

1 
v.0 

as- 
Figure 1. Schematic diagram and the boundary conditions used for expansion flow problem 
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Figure 2. Coarsest finite element mesh (400/445 elements/nodes) for expansion flow problem. In addition, 1600/1689 and 
6400/6577 elements/nodes meshes were used 

Figure 3. Representative velocity solution for sudden expansion flow problem (Reynolds number = 60). Sudden 
expansion at x=2 

element mesh. The results for the iterative solvers are compared with both those given in 
Reference 26 and those from the frontal solver using the finest mesh (6400 elements). 

A representative velocity solution for the sudden expansion flow problem is shown in Figure 3. 
The pressure distribution along the bottom wall of 400 and 1600 element meshes with iterative 

solvers are plotted in Figure 4. The iterative solution results were obtained using E =  lo-’. The 
pressure profiles for the coarse meshes are compared to the fine mesh results from the direct 
solver and the results from Lee et aLZ6 Lee et al. used a nine-noded quadratic elements to obtain 
the velocity field while four-noded elements were used in this study. All results in Figure 4 exhibit 
the same behaviour observed by Lee et al. The major differences in the pressure profiles are 
noticed in the inlet section, with the coarsest mesh results showing the poorest agreement. These 
differences are attributed to the error in the way the smoothing algorithm computes the velocity 
gradient at the boundaries and corner nodes. However, the accuracy in the inlet pressure 
distribution is seen to improve by increasing the mesh density. The pressure gradient for a fully 
developed flow between parallel plates is a function of wall shear stress. Therefore, by refining the 
mesh, the wall shear stresses are computed more accurately and this improves the pressure 
solution. In other words, the wall shear stress is a small-scale phenomenon and therefore mesh 
refinement produces more accurate solution. 

When using a direct solver, mesh refinement produces a more accurate solution that captures 
both the large-scale and the small-scale phenomena. However, when using iterative solvers, mesh 
refinement does not necessarily produce more accurate results for complex flows. This solution 
behaviour is counter-intuitive to conventional numerical methods. Examples of this behaviour 
are demonstrated in the remainder of this paper. 

The first example of the unique convergence behaviour of iterative solvers is illustrated in 
Figure 4. Here, the pressure solution near the exit for the 1600 element mesh with the GMRES 
solver ( E  = 10- 5, is seen to differ slightly from the 400 element results. This indicates the loss of 
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Figure 4. The predicted pressure distributions along the bottom wall using GMRES and ORTHOMIN solvers for 400 
and 1600element meshes ( E =  The relative accuracy of iterative solvers is determined by comparing with the frontal 

solver results (6400 elements mesh) and values from Reference 26 

accuracy by refining the mesh for a fixed convergence tolerance. The error in the GMRES 
solution is more apparent and occurs immediately downstream of the expansion for the finer 
mesh as seen in Figure 5. In Figures 5-8, the legend contains the mesh size, the solver and the 
convergence tolerance. The pressure profile for the GMRES solver with E =  lo-’ in Figure 5 
indicates that the flow reached a nearly fully developed state. However, this is correct only for 
creeping tlows with a very small Reynolds number. The results indicate that the effect of the 
convective terms (large-scale phenomenon) is not captured by the GMRES solver when a fine 
mesh is used with E =  By using a tighter convergence criterion for the residual calculations 
of the GMRES solver, E = this problem was overcome as shown in Figure 5. The pressure 
distribution obtained using ORTHOMIN solver with both E =  lo-’ and ~ = 5  x shows good 
agreement with the frontal solver results. The ORTHOMIN results are better than the GMRES 
results for a fixed residual solver with both E =  and ~ = 5  x lop6 showing good agreement 
with the frontal solver results. The ORTHOMIN results are better than the GMRES results for 
a fixed residual tolerance, E. It is evident from Figure 5 that the resolution of the large wavelength 
error components is mesh and solver dependent. 

The coefficient of friction (z,/0.5 p U ’) along the top wall for the 1600 element mesh is plotted 
in Figure 6, where z, is the wall shear stress. The iterative solver results are compared with the 
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Figure 5. The predicted pressure distributions along the bottom wall using GMRES and ORTHOMIN solvers for 6400 
elements mesh as a function of convergence tolerance, E. The relative accuracy of iterative solvers is determined by 
comparing with the frontal solver results. The GMRES solver requires an order of magnitude smaller E compared to the 

ORTHOMIN solver to achieve the same level of accuracy for the 6400 elements mesh 

values obtained using the frontal solver with the finest mesh. Again, the ORTHOMIN solver 
exhibits a better solution compared to the GMRES solver using the same E. The frontal solver 
solution shows oscillatory behaviour near the exit. This behaviour is due to the error in the 
calculation of velocity gradients near the corners. Further, in the case of traditional penalty 
model, the stresses and pressure are calculated after obtaining the converged velocity field. On the 
other hand, when using ORTHOMIN and GMRES solvers we use iterative penalty model where 
the stresses and pressures are computed for every non-linear iteration. This method provided 
a better smoothing of the stresses and suppresses oscillations in pressure solution. The reattach- 
ment length can be determined by calculating the location where the friction coefficient (wall 
shear stress) changes sign. 

The friction coefficient along the top wall for the finest mesh is plotted in Figure 7. Here, it is 
evident that the large-scale phenomenon is not resolved with GMRES solver using E = lo-’ since 
the recirculation region is confined only to a small region close to the expansion. The error in the 
GMRES solution is also clear from the normalized velocity profiles at x = 3 (one unit downstream 
of the sudden expansion) shown in Figure 8. The velocities are normalized by dividing with 
maximum inlet velocity (U = 60). Similar to pressure solution, the accuracy of the shear stresses 
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Figure 6. The predicted coefficient of friction along the top wall downstream from sudden expansion using GMRES and 
ORTHOMIN solvers for 1600 element mesh (&=lo-’). The relative accuracy of iterative solvers is determined by 

comparing with the frontal solver results (6400 elements mesh) 

and the velocity profiles are improved by tightening the convergence tolerance. The reattachment 
lengths computed by the GMRES and the ORTHOMIN solvers as a function of mesh density 
and convergence tolerance are given in Table I. The frontal solution value for the fine mesh is also 
given in Table I. 

produced an accurate pressure distribution along the 
bottom wall (Figure 5),  however, the error in the reattachment length (Table I) is nearly 10 per 
cent. This is because the pressure distribution on the bottom wall depends on the wall shear stress, 
which is a small-scale phenomenon. On the other hand, the reattachment length on the top wall 
depends on the strength of the convective terms and therefore is a large-scale phenomenon which 
was not resolved properly by using Although the shear stress at the top wall is 
a small-scale phenomenon, it is coupled to the large-scale phenomenon of the flow separation. 
This expidins the error in the friction coefficient along the top wall in Figure 7. 

The normalized CPU time for the 6400 element mesh for the iterative solvers with different 
values of E are given in Table 11. The CPU times are normalized by taking the time required by 
ORTHOMIN solver with E =  lop5 as one unit. As expected, the frontal solver required less CPU 
time. In general, for a given number of iterations, the GMRES solver requires more CPU time 
due to the calculations associated with the Krylov space. Table I1 illustrates that the 
ORTHOMIN solvers require less CPU time for the same accuracy. Concerning the convergence 

The ORTHOMIN solver with E =  
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Figure 7. The predicted coefficient of friction along the top wall downstream from sudden expansion using GMRES and 
ORTHOMIN solvers for 6400 element mesh as a function of convergence tolerance, E. The relative accuracy of iterative 
solvers is determined by comparing with the frontal solver results. The GMRES solver requires an order of magnitude 

smaller E compared to the ORTHOMIN solver to achieve the same level of accuracy for the 6400 element mesh 

rate of the iterative solvers, it was observed that the residual norm decreases monotonically for 
the GMRES solver, but the residual norm tends to oscillate for the ORTHOMIN solver. 

Correlation between Ah, E and Iz 

The convergence criterion needed to obtain a specified degree of accuracy in the solution is seen 
to be proportional to the mesh size. This relationship is apparent from the results seen in 
Figures 4-8 when comparing the trends for a given solver. As the element size, Ah, decreases, the 
convergence tolerance must also be decreased to maintain the same degree of accuracy. Thus, 

E = K ~  Ah, (12) 
where K 1  is some proportionality constant yet to be determined. This relationship is schemati- 
cally illustrated in Figure 9. 

Further, a relationship between E and Iz  is seen when comparing the percentage error in the 
solution for a given solver as the convergence tolerance and the penalty parameter vary. Table I11 
summarized the results of this comparison by using the ORTHOMIN solver for a fixed mesh size. 
The '100.00' in Table I11 denotes a solution devoid of a recirculation region. The stair step pattern 
in the results show that the maximum value of L is proportional to the inverse of E. Thus, 

E = K2/A, (1 3) 
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N O R M A L I Z E D  A X I A L  VELOCITY 

Figure 8. The predicted axial velocity profiles at x = 3 (1 unit downstream of the sudden expansion) for GMRES and 
ORTHOMIN solvers as a function of convergence tolerance, E .  The relative accuracy of iterative solvers is determined by 

comparing with the frontal solver results. The trend agrees with results shown in the previous figures 

Table I. Computed values of reattachment length 

Case Solver Elements Residual Reattachment Percentage 
norm length &) error* in L, 

1 Frontal 
2 ORTHOMIN 
3 GMRES 
4 ORTHOMIN 
5 GMRES 
6 ORTHOMIN 
7 GMRES 
8 GMRES 

6400 
1600 
1 600 
6400 
6400 
6400 
6400 
6400 

- 

1 x 1 0 - 5  
1 x 1 0 - 5  
1 x 1 0 - 5  
1 x 1 0 - 5  

5 x 10-6 
5 x 10-6 
1 x 10-6 

2,42093 
2.36747 
1-99294 
2.16781 
0.33772 
2.43268 
1.78918 
2.32677 

OGOOOO 
2.20824 

17.67874 
10.45548 
86.05000 

-0.48535 
26.09534 
3-88941 

* Percentage error is calculated by taking frontal solver value as the reference 

where K2 is some proportionality constant yet to be determined. This relationship is schemati- 
cally illustrated in Figure 10. 

By combining equations (12) and (13) and expressing the penalty parameter explicitly as 
a product of 1 and the viscosity q, a single comprehensive expressions for the interaction between 
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Table 11. CPU time comparisons* for 6400 elements mesh 

Case Solver Residual norm CPU time 

1 Frontal 
2 ORTHOMIN 
3 GMRES 
4 ORTHOMIN 
5 GMRES 
6 GMRES 

- 0.2692 
1 10-5 1 -0000 
1 x 10-5 1.9878 
5 x 10-6 1.3930 
5 x 10-6 4.7333 
1 x 10-6 11.3959 

~ ~~ ~ ~ ~~~ ~~~~ ~~ 

* CPU times are normalized with the CPU time required by ORTHOMIN solver with E =  

- 
Ah 

Figure 9. For a given penalty parameter, the convergence tolerance (8) must decrease as the mesh size (Ah) decreases to 
maintain the same degree of accuracy. This trend is demonstrated in Figures 5-8 for a given iterative solver 

Table 111. Percentage error in reattachment length calculations for different values of E 
and 1 (ORTHOMIN solver, 400 elements mesh) 

1 x 10-3 1 x 10-4 1 x 10-5 1 x 10-6 1 10-7 
~ ~~ 

1 x 100 
1 x 10' 
1 x 102 
1 x 103 
1 x 104 
1 x 105 

1 x 107 
1 x 106 

1 x 108 

~ 

3 1.7795 
23.2720 
4.4462 
2.4404 

100~oooO 
100~0000 
100~0000 
100.oooO 
100~0000 

45.8621 
24.8706 

5.04 15 
2.2624 
3.7 188 

100~0000 
100~0000 
100WOO 
100~0000 

45.8365 
2456 15 

5.2695 
1.5998 
2.1673 
4.8448 

100~0000 
100~oooO 
100~0000 

45.8378 
24.56 1 5 
5.1422 
1.7014 
1-1818 
2.6254 

- 3.5776 
100-OOOO 
100~o0o0 

45.8390 
24.8347 

5.1422 
1.6998 
1.4420 
1.1847 
1.9170 

-2.8018 
100~0000 

Ah, E and ,I can be obtained: 

E = K'Ah/A?. 

Equation (14) can be made non-dimensional by assuming that K' contains the fluid density and 
a characteristic velocity as factors; then 

E = KpAhU/IZq, (15) 

where the proportionality constant K is assumed to be a function of the geometry of the problem. 
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Figure 10. For a given mesh, the maximum value of penalty parameter (A)  allowed before the accuracy of the solution 
deteriorates rapidly is found to be proportional to the inverse of the convergence tolerance ( E )  

Table IV. CPU time in seconds required for different values of E and 1 (ORTHOMIN solver, 
400 elements mesh) 

1 x 100 
1 x 10' 
1 x 102 
1 x 103 
1 104 
1 x 1 0 5  

1 x 107 
1 x 106 

1 x 108 

I x 1 0 - 3  1 x 10-4 

35.21 89.77 
30.63 69.5 1 
32.07 65.13 
32.69 91.38 
8.19 155.29 
6.33 8.75 
6.1 1 5.95 
6.6 1 6.12 
6.98 6.32 

1 10-5 

122.30 
88.77 
73.12 

138.06 
168.1 1 
189.56 

9.75 
7.00 
6.87 

1 x 10-6 

136.76 
106.79 
95.9 1 

194.90 
275.60 
246.06 
159.23 

12.57 
6.72 

I x 10-7 

145.33 
1 1  1.99 
110.23 
237.66 
406.85 
483.68 
362-99 
262.69 

9.74 

Equation (15) can be used to determine the appropriate convergence criterion for a finer mesh 
solution once a satisfactory solution is obtained for a coarse mesh. 

Finally, the relative efficiencies of different combinations of E and I in terms of the CPU 
requirements for a given degree of accuracy is summarized in Table IV. The element mesh yields 
the accurate estimate of the reattachment length with either E =  and A =  lo4 or with E =  lo-' 
and I= lo5. However, the former combination requires about one-half of the CPU effort as the 
later, refer Table IV. In fact, depending upon the requirements for accuracy, much quicker results 
are possible with combinations of E and A that are in the upper left portion of Table IV. 

CONCLUSIONS 

The behaviour of GMRES and ORTHOMIN solvers as a function of mesh density is studied by 
solving flow inside a sudden expansion channel at a Reynolds number of 60. Based on the results 
presented in this paper, it is clear that the convergence rate of iterative solvers depends on the 
mesh density and the solution algorithm. It is also observed that the ORTHOMIN solver is more 
efficient than the GMRES solver as it requires less CPU time to obtain accurate solutions. 
Further, the finest mesh for iterative solvers produces less accurate results than the coarser 
meshes for a given convergence tolerance. This is due to the inability of the solver to resolve 
large-wavelength Fourier components of the error as the element density increases. We have 
observed a similar behaviour for a wide range of problems. 
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